STATIC Vs. CURRENT ELECTRICITY

SIMILAR	DIFFERENT
Both: need <u>input of energy</u> to create charge (friction or other source)	Static: displaced electrons are <i>localized</i> Current: displaced electrons move
Both : 1 st step is charge separation 2 nd step is <u>charge transfer</u> (neutral object or battery)	<pre>Static: brief transfer of small amounts of charge Current: continued transfer of large amounts of charge</pre>
Both : will <u>discharge</u> (<i>run out</i>) when all electric charge is transferred back	Static: discharges <i>randomly</i> Current: discharges through a <u>conducting path</u>

OUTCOME QUESTION(S):

S1-3-09/10/12:

What do current, voltage and resistance mean for electrons?

<u>Vocabulary & Concepts</u>			
Cell	Coulomb	Voltage	
Volt	Voltmeter	Current	
Ampere	Ammeter	Resistance	
Resistor	Ohm	Load	

Cell: device that uses a <u>*chemical*</u> reaction</u> to create a <u>*flow*</u> of electrons between different materials.

NEED:

- metal to <u>lose</u> electrons (-) electrode (anode)
- metal to <u>gain</u> electrons -(+) electrode (*cathode*)
- chemically *reacting* substance electrolyte

Cell Measurements:

• 1 coulomb = 6.25 quintillion (6.25×10^{18}) electrons

Think of a coulomb as very, very large "dozen"

- 1. Voltage (V) *Electrical potential* of electrons in a <u>source</u>:
- electrons *convert* their *potential energy* into work

Potential: *unrealized* ability to accomplish something **Voltage**: *energy* the electrons have to *potentially* do something

- Measured by a **Voltmeter**
- Units: Volt (V)

F is energy/work potential in joules
I is the number of coulombs

Voltage (volts) measures the potential energy available in every coulomb of electrons

As electrons move to the other end of the source, they lose all potential (stored) energy

1.5 Volt battery

1.5 V – typical *battery*

2. Current (I)

The rate (*speed*) at which electrons move *through the conductor*.

- Measured by an Ammeter
- Units: <u>Ampere /Amps (A)</u>

Current (amps) measures the number of electrons passing a point every second

1 Amp = electrons
moving at a rate of
1 coulomb per second

- 0.83 A current needed for a typical light bulb
- 0.2 A severe burns, heart stops, lungs stop

("let go" threshold)

- **0.02** *A* breathing affected, *muscles* contract
- 0.002 A muscles tingle (good shock)

Its not the voltage that **kills**, it's the *current*: the **number of electrons** running through you

3. Resistance (R)

Anything that *slows down <u>electrons</u>* and *takes potential <u>energy away</u> in the process.*

<u>Resistors</u> are electrical *components* used to control the *<u>current</u>* and voltage *to protect the device*.

Units: <u>ohm (Ω)</u>

Energy taken is *converted* as *work* or lost as *heat*

decrease voltage

The loss of potential energy as electrons slow through a resistor is called the "**voltage drop**"

Even the conducting wire provides some resistance (takes some energy away converting it to **heat**)

CAN YOU ANSWER THESE QUESTIONS? S1-3-09/10/12:

What do current, voltage and resistance mean for electrons?

Vocabulary & Concepts			
Cell	Coulomb	Voltage	
Volt	Voltmeter	Current	
Ampere	Ammeter	Resistance	
Resistor	Ohm	Load	