

OUTCOME QUESTION(S): S1-2-05

How do you draw an atom using the Bohr model?

Vocabulary & ConceptsorbitBohr Diagramvalence

PRE-NOTE QUESTION(S):

Where is each subatomic particle placed in an atom?

protons - in nucleus neutrons - in nucleus electrons - around the nucleus

Refresh

Niels Bohr (1913)

"Flame Test" experiments show heated elements emit a *unique pattern of colour*.

Each element showed a <u>unique colour</u> signature that is used to identify elements in mixtures or compounds

• This **<u>emitted</u>** light was *from* <u>*excited electrons!*</u>

Colour	Element
green	<u>copper</u>
red	<u>strontium</u>
purple	potassium
lavender	<u>Lithium</u>
<u>yellow</u>	sodium

Hypothesis: <u>Electrons move in *organized circular paths* of</u> <u>different *distances* around a nucleus.</u>

Orbit: location of electron motion around a nucleus.

Only a specific number of electrons *fill* each orbit!

Bohr reasoned that *random* electron movement cannot produce the same unique colour pattern EVERY TIME

- Electrons occupy the *<u>closest orbital first</u>*
- Each element have a <u>different</u> number of electron

HOW DO WE KNOW HOW MANY PROTONS, NEUTRONS, AND ELECTRONS AN ATOM HAS?

1					F	ootas	sium										18
IA 1	1				-210	(19	9										VIIIA 2
H	2						2					13	14	15	16	17	He
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
3	4											5	6	7	8	9	10
Li	Be											B	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12					39.0)98					13	14	15	16	17	18
Na	Mg	3	4	5				-	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98	28.09	30.97	32.07	35.45	39.95
potassium 19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)							

Use the atomic mass and atomic number to find the information (p⁺, n^o, e⁻) to build **Bohr** atomic models

HOW DO WE KNOW HOW MANY PROTONS, NEUTRONS AND ELECTRONS AN ATOM HAS? We use the afomic number and afomic Protons = atomic number Mass INeutrons = atomic mass – atomic number Electrons = atomic number

Protons = 19 Neutrons = 39 -19=20 Electrons = 19

Drawing a Complete Bohr Diagram:

- 1. Determine the *number* of $\underline{\mathbf{n}^{0}, \mathbf{p}^{+}, \mathbf{e}^{-}}$ in the atom.
- 2. Draw the nucleus.
- 3. Label the #of **protons** and **neutrons**. $n + h_{nv} < |_{e_{v}} <$
- 4. Add orbits and fill with the <u>appropriate</u> # of e^- .

Nitrogen (N) $p^+: \underline{7}$ $n^o: \underline{14-7=7}$ $e^-: \overline{7}$

Lithium (Li) p⁺ : <u>3</u> $n^{o}: 7 - 3 = 4$ e⁻:<u>3</u>

Remember the first shell can only hold 2 electrons before being "full"

Sodium (Na) p⁺ : <u>11</u> $n^{o}: 23 - 11 = 12$ e⁻: <u>11</u>

Putting electrons around in pairs at the quadrants makes it easier to count later

Valence:

- •Last (outer) atom orbit
- •All electrons in last orbit are called valence

<u>electrons</u>

The number of **valence** electrons in an atom determines how the atom <u>chemically reacts</u>

Neon