Models of Matter:

 Bohr Diagrams

OUTCOME QUESTION(S): S1-2-05
 How do you draw an atom using the Bohr model?

Vocabulary \& Concepts

 orbitBohr Diagram

valence

PRE-NOTE QUESTION(S):
Where is each subatomic particle placed in an atom?
protons - in nucleus
neutrons - in nucleus
electrons -around the nucleus

Refresh

Niels Bohr (1913)

"Flame Test" experiments show heated elements emit a unique pattern of colour.

Each element showed a unique colour signature that is used to identify elements in mixtures or compounds

- This emitted light was from excited electrons!

Colour	Element
green	copper
red	strontium
purple	potassium
lavender	Lithium
yellow	sodium

Hypothesis:

 Electrons move in organized circular paths of different distances around a nucleus.
Flame Tests

Orbit: location of electron motion around a

 nucleus.Only a specific number of electrons fill each orbit!

Bohr's model is called the "planetary" model

ORBITS:

$\mathbf{1}^{\text {st }}$: holds two electrons (e^{-})
$2^{\text {nd }}$: holds eight e^{-}
$3^{\text {rd }}$: holds eight e^{-}

$$
\begin{aligned}
& \text { energy level } \\
& \lambda
\end{aligned}
$$

Electron Energy Levels

Electrons occupy the closest orbital first
Each element have a different number of electron

HOW DO WE KNOW HOW MANY PROTONS, NEUTRONS, AND ELECTRONS AN ATOM HAS?

Use the atomic mass and atomic number to find the information ($\mathrm{p}^{+}, \mathrm{n}^{\circ}, \mathrm{e}^{-}$) to build Bohr atomic models

HOW DO WE KNOW HOW MANY PROTONS, NEUTRONS AND ELECTRONS AN ATOM HAS?
We use the atomic number and Protons $=\underline{\text { atomic number }}$
atom re

Neutrons $=\underline{\text { atomic }}$ mass - atomic number
Electrons $=$ atomic number

> Protons =19
> Neutrons = 39-19=20
> Electrons $=19$

Drawing a Complete Bohr Diagram:

1. Determine the number of n^{0}, p^{+}, e^{-}in the atom. 2. Draw the nucleus.
2. Label the \#of protons and neutrons. in the nuleus 4. Add orbits and fill with the $\frac{\text { appropriate }}{2,8,8} \#$ of e^{-}.

Lithium (Li)

Remember the first shell can only

 hold 2 electrons before being "full"
$\mathrm{p}^{+}: \underline{3}$

$$
\mathrm{n}^{\mathrm{o}}: 7-3=4
$$

$$
\mathrm{e}^{-}: \underline{\mathbf{3}}
$$

Sodium (Na)

Putting electrons around in pairs at the quadrants makes it easier to count later

$\mathrm{p}^{+}: \underline{11}$

$$
\mathrm{n}^{0}: \underline{23-11=12}
$$

$$
\mathrm{e}^{-}: \underline{11}
$$

Valence:

-Last (outer) atom orbit
-All electrons in last orbit are called valence electrons

The number of valence electrons in an atom determines how the atom chemically reacts

Hydrogen

Boron
Hydrogen has a total of $1 \mathrm{e}^{-}$(1 valence e^{-})
Boron has a total of $5 \mathrm{e}^{-}$(3 valence e^{-})
Neon has a total of $10 \mathrm{e}^{-}$(8 valence e^{-})

Neon

