
Classifying Matter:

Properties of Materials

OUTCOME QUESTION(S):

S1-2-07

What properties classify elements as metals, nonmetals or metalloids?

S1-2-12

How do you identify physical or chemical change, and how do you know if a chemical reaction has taken place?

Vocabulary & Concepts								
State/Phase-S	Lustre							
Malleability	Solubility							
Reactivity	Combustibility							
Precipitate	Corrosion							
Law of Conservation of M	atter							

Ductility Conductivity Toxicity Oxidation

Where do we find metals, nonmetals, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_$

U

238.03

Np

(237)

1		١٨	_								— 1				18
	\wedge	fn	5	4		N	/ E	T	\L			\sum_{15}	16	17	2 He 4.0016
3 4 Li Be 6.94 9.0122		,						\cap		5 B 10.81	6 C	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.18
11 12 Na Mg 22.990 24.305 3	fo	\downarrow	h	(7	le	f <u></u> †	10	11) C 12	13 Al 2.982	14 Si 28.085	15 P 29.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 20 21 K Ca Sc 39.098 40.07	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn 65.38	31 Ga 69.723	32 Ge 2.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 38 Rb Sr 85.468 87.62			Т	Δ	T	C	7	-	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 56 Cs Ba 132.91 137.3		\Box	L.	A				_	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (109)	85 At 210)	86 Rn (222)
87 88 Fr Ra # (226) (226)	Rf (265)	Db (268)	Sg (271)	Bh (270)	Hs (277)	Mt (276)	Ds (281)	Rg (280)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	0g (294)
* Lanthanide series	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
# Actinide	138.91 89	90	140.91 91	144.24 92	(145) 93	150.36 94	151.96 95	157.25 96	158.93 97	162.50 98	164.93 99	167.26	168.93 101	173.05	174.97

Pu

(244)

Am

(243)

Cf

(251)

Bk

(247)

Cm

(247)

Es

(252)

Fm

(257)

Md

(258)

Lr

(262)

No

(259)

Actinide series

Ac

(227)

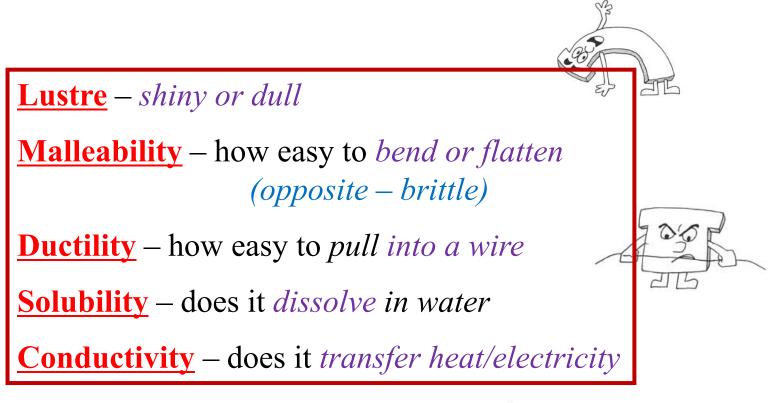
Th

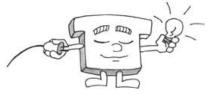
232.04

Pa

231.04

Physical properties


- Trait that is observed or <u>measured without</u>
 <u>changing the composition of matter</u>
- Can be qualitative or quantitative M
- Examples


No two substances in the Universe have the same melting or boiling point - **UNIQUE**

Melting point – unique temperature needed to change from solid into liquid

Boiling point – *unique temperature* needed to change from *liquid into gas*

Other examples of Physical Properties:

Chemical properties

• Trait describes if substance reacts chemically

You have to be willing to **destroy or alter** the substance you are testing to find a *chemical property*

• Examples

<u>Reactivity</u> – does it **react** *quickly?*

<u>Combustibility</u> – does it ignite or *burn?*

<u>Corrosion</u> – does it **react** with *acids*?

Oxidation – does it **react** with *air*?

Toxicity – does it **react** with the *body*?