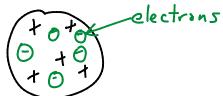
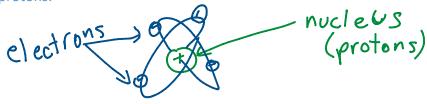
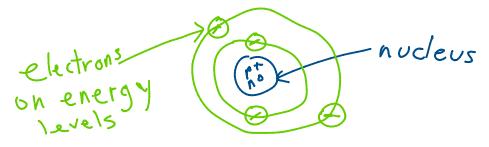
Atoms and Elements Review - Period 2


October 21, 2019 8:32 AM

Chemistry Review


- History
 - Who were the people and scientists we discussed that contributed to the model of an atom?
 - What was each person's belief or goal, and if they had a model of an atom, what was it?
 - Include: Aristotle, Democritus, John Dalton, J.J. Thomson, Ernest Rutherford, Niels Bohr
 - <u>Aristotle</u>: 4 Element Theory everything was made out of 4 elements earth, air/wind, fire, water
 - **Democritus**: everything was made up of tiny, indivisible particles he called them 'atomos'
 - John Dalton: Billiard Ball Model atoms are tiny, dense spheres that cannot be broken.
 - Had a basic atomic theory.


- **JJ Thomson:** Plum Pudding Model atoms are dense positive spheres, with negative electrons spread throughout.
 - He discovered the electrons.

- <u>Ernest Rutherford:</u> Nuclear Model atoms have a dense positive nucleus with protons, and the electrons occupied empty space around the nucleus.
 - He discovered protons.

- <u>Niels Bohr:</u> Planetary Model (Bohr Diagrams) electrons are organized into energy levels or 'orbits' around the positive nucleus.
 - He discovered the energy levels/orbits

- Model of an atom

- What are the 3 subatomic particles?
 - Protons, neutrons, electrons
 - What are the charges of each particle?
 - Protons = positive
 - Neutrons = neutral
 - Electrons = negative
 - What is the mass (or weight) of each particle?
 - Protons = 1 atomic mass unit (amu)
 - Neutrons = 1 atomic mass unit (amu)
 - Electrons = no mass
 - Where is each particle found in the model of an atom?
 - Protons = in the nucleus
 - Neutrons = in the nucleus
 - Electrons = around the nucleus on orbits
 - How can you find the number of each particle from the periodic table?
 - Protons = atomic number
 - Neutrons = atomic mass subtract the atomic number
 - Electrons = number of protons (atomic number)

_

- Bohr Diagrams

- How do you draw a Bohr diagram?
 - Step 1: Draw nucleus, and place correct number of protons and neutrons into it.
 - Step 2: draw the correct number of electron orbits.
 - Step 3: place the correct number of electrons on each orbit.
 - How do you determine the amount of protons and neutrons?
 - Protons are is the atomic number
 - Neutrons is the atomic mass subtract the atomic number
 - Where do the protons and neutrons belong in the diagram?
 - In the nucleus
 - How many electrons belong on each orbit/shell?
 - 1st orbit = 2 electrons
 - 2nd orbit = 8 electrons
 - 3rd orbit = 8 electrons
 - ***orbits need to be filled before moving onto the next orbit.
 - What is the valence orbit/shell?
 - What are valence electrons?
 - What is an easy way to find the number of valence electrons using your Periodic Table?

- Period Table

- Who were the scientists that lead to the development of the Periodic Table?
- What are the columns of the Periodic Table called?
 - What do these columns have in common?
- What are the rows of the Periodic Table called?
 - What do these rows have in common?
- What are the names of specific groups or families that are coloured on your Periodic Table?
 - Include: Alkali Metals, Alkaline Earth Metals, Halogens, Nobel Gases
- Where do you find metals on the Periodic Table?
- Where do you find metalloids on the Periodic Table?

- Where do you find non-metals on the Periodic Table?

- Classifying Matter

- What is matter?
 - What is the difference between the terms atom, element, compound, molecule, pure substance, and mixture?
- How is matter classified into metals, non-metals, and metalloids?
 - What are the common properties of metals and non-metals?
- What is the difference between a physical property and a chemical property?
 - What are examples of each?
- What is the difference between a physical change and a chemical change?
 - What are examples of each?
 - How do you know a chemical change has taken place?

- Counting Atoms

- How do you determine the elements that are written in a formula?
- How do you determine the number of each type of atom in a formula?
- How do you determine the number of molecules from the written formula?
- What is the difference between a subscript and a coefficient?
- Know how to determine the number of atoms in a formula that involves a bracket.

Vocabulary

These are terms that you should understand. Read through the list and write out definitions to any word you do not understand the meaning of. Words in *italics* are names of people/scientists.

- alchemy
- Alkali metals
- Alkaline Earth metals
- atom
- atomic mass
- atomic number
- Bohr Diagram
- combustibility
- compound
- conductivity
- corrosion
- Dalton
- Democritus
- ductility
- electron
- element
- energy level
- family
- group
- Halogens
- Law of Conservation of Matter
- lustre
- malleability
- Mendeleev
- metalloid

- molecule
- neutral
- neutron
- Noble gases
- nucleus
- orbit
- oxidation
- period
- precipitate
- proton
- reactivity
- Rutherford
- solubility
- state/phase
- subatomic
- Thomson
- toxicity
- valence

From < https://gvsd-my.sharepoint.com/personal/laura_kalyta_gvsd_ca/Documents/Documents/Science%2010F/01%20-%20Atoms%20and%20Elements/Assignments%20and%20Worksheets/Review%20Topics%20on%20Test.docx>