9:38 AM

## **Reproduction Review**

#### 1. Cells

- a. Know the basic organelles/structures within cells and what they do.
  - i Include:

cell membrane = "body guard of the cell" lets things into and out of cell cell wall = provides extra structure and support for PLANT CELLS!
centriole = produces spindle fibers during mitosis
chloroplast = produces food for PLANT CELLS
cytoplasm = provides supports for all other organelles inside of cell
endoplasmic reticulum = "highway of the cell" transports materials
Golgi body(apparatus) = "post office" modifies and packages proteins to leave cell
lysosome = break down substances inside of the cell
mitochondria = produces energy "powerhouse of the cell"
nucleus = "brain of cell" controls the cell's function and contains DNA (chromosomes)
ribosome = produce proteins
vacuole = store nutrients, waters, other substances...etc.

b. Know the difference between a plant cell and animal cell.

Plant cells have cell walls and chloroplasts, animal cells do not. Animal cells have more mitochondria.

#### 2. Cell Division

- a. Cell Theory
  - i. Recognize and understand the 3 main points under the cell theory.
    - 1. Cells are the basic unit of life.
    - 2. Everything living is composed of 1 or more cells.
    - 3. All cells come from pre-existing cells.

## b. Cell cycle

i. What is the cell cycle?

= the process/cycle that all cells go through (life of a cell)



ii. What are the 2 main phases/stages of the cell cycle? Interphase = living, growing, repairing, preparing to divide (replicating DNA) the division phase/stage = cell divides (mitosis and cytokinesis)

- iii. What is a cell doing for the majority of its life?
  - = It is in interphase: growing, repairing, preparing to divide.
- iv. Know what *interphase* is, especially the fact that it is separate from the cell division phases. = See above.
- c. Asexual vs Sexual reproduction
  - i. What are similarities and differences of asexual and sexual reproduction?

|         | Similarities                                        | Differences                                                                                                                                  |  |
|---------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| asexual | -Both result in offspring<br>- both utilize mitosis | -done by oneself (no<br>partner required)<br>-offspring is identical<br>to parent<br>-faster than sexual<br>-uses less energy<br>than sexual |  |
| sexual  | -Both result offspring<br>-both utilize mitosis     | -need a partner -offspring is different from parent -slower than asexual -uses more energy than asexual                                      |  |

i. What are the advantages and disadvantages of both asexual and sexual reproduction?

|         | Advantages                                                                                                                                                                            | Disadvantages                                                                                                       |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Sexual  | -high variation in<br>offspring (genetic<br>variation)<br>-more variety<br>-two parents to support<br>offspring                                                                       | -takes a lot of time and<br>energy<br>-no guarantee of success<br>-more complex, and more<br>can go wrong)          |  |
| Asexual | -happens quickly(no<br>wasted time or energy)<br>-survive easily (parent<br>survives, they all survive)<br>-large number of<br>offspring<br>-they stay close together<br>(protection) | -no genetic variation (one gets sick they all do) -lead to overcrowding -little chance for adaptations or evolution |  |

- ii. Recognize the following examples of asexual reproduction:
  - Binary fission = mitosis, but in bacteria with a single circular chromosome budding = production of a small new 'bud' cell (like mitosis, but unequal cells) sporulation= producing 1000s of tiny "mini-me's" that can be spread fragmentation = regeneration: starting a new organism from a small bit of the old one. vegetative propagation= plants only: growing a whole new plant with a part of one (stem, leaf, root, runners, )
- d. Cell division mitosis and cytokinesis
  - i. What are the 3 main reasons as to why cells divide?
    - 1. Growth
    - 2 Repair
    - 3. Reproduce
  - ii. Illustrate and explain the 4 different phases of mitosis:
    - Prophase = d.s. chromosomes appear, and nuclear membrane disappears metaphase = d.s. chromosomes line up at the middle anaphase= d.s chromosomes are pulled apart telophase= new nuclei form around each set of s.s. chromosomes \*\*for illustrations, see notes or flashcards
  - Understand that the final part of the division phase is cytokinesis, and what occurs during this phase.
    - = cytoplasm fully splits, and a cell membrane forms around 2 new identical cells
  - iv. Identify the end result of mitosis (type and number of cells).
    - = 2 new, identical cells
- e. Gamete formation meiosis
  - i. What is the purpose of meiosis?= to produce haploid gametes (half the DNA) What does it produce? = haploid gametes (sperm or eggs) Where does it occur?= gonads (testes and ovaries)
  - ii. Illustrate and explain the different phases of meiosis.

Prophase I = chromosome appear, and nuclear membrane disappears Metaphase I = homologous pairs( 2 d.s. chromosomes) line up at the middle Anaphase I= homologous pairs get pulled apart Telophase I= new nuclei form around two sets of half the original DNA

Prophase II=can see the d.s. chromosomes, no nuclear membrane Metaphase II=d.s. chromosomes line up at middle Anaphase II=d.s. chromosomes are pulled apart Telophase II= nuclear membrane forms around each of the sets of chromosomes.

iii. Identify the end result of meiosis (type and number of cells).

we get 4 haploid gamete cells -they have half the amount of DNA -sperm cells or egg cells

iv. Compare the processes of mitosis and meiosis.

What are similarities?
= both run through the PMAT stages
=both make new cells
=split up ds chromosomes

### What are differences?

=mitosis makes identical cells, meiosis makes different cells =mitosis makes 2 cells, meiosis makes 4 cells =mitosis runs through PMAT once, meiosis runs through PMAT twice =mitosis makes regular body cells in humans, meiosis makes **gametes** (sperm and egg) in humans

## 3. Human Reproductive Systems

- a. Male reproductive system
  - Know the overall function of the male reproduction system.
     =produce sperm and then deliver it to the egg.
  - ii. Be able to identify and describe the function of the following structures:
    - Bladder=hold urine
      Cowper's gland=makes semen with the seminal vesicle and the prostate gland epididymis=stores sperm until ejaculation penis=becomes hard to help deliver the sperm to the female prostate gland=makes semen with the Cowper's gland and seminal vesicle. scrotum=holds the testes outside the body to keep them at optimal temperature seminal vesicle=makes semen with Cowper's gland and prostate gland. testes=make sperm and produces testosterone urethra=tube that will deliver the sperm in semen to the female vas deferens=transports sperm from epididymis to the urethra
  - iii. Identify the male sex hormone. = testosterone
    - What are its effects on the male reproductive system?
       sperm production
       secondary sex characteristics
    - What secondary sex characteristics does it promote?
       =hair growth (beard, chest, back, legs, armpits, pubic)
       =enlarges the Adam's Apple (lower the voice)
       =increases/favours muscle growth
- b. Female reproductive system
  - i. Know the overall function of the female reproduction system.

=mature eggs in ovaries =release the eggs (ovulation) =nurture the zygote if it implants =grow the embryo, until birth

- ii. Be able to identify and describe the function of the following structures:
  - Bladder=holds urine
    cervix=muscular opening to the uterus
    ovary=produce/release mature egg cells, and produces estrogen and progesterone
    oviduct (fallopian tubes)=transport the egg cell to the uterus; site of fertilization
    uterus=pear shaped organ that will hold the growing embryo
    vagina =the opening for menstrual fluid to leave the body, or for a child being born. The
    location where sperm is deposited
- iii. Identify the female sex hormones.=estrogen and progesterone
  - What are their effects on the female reproductive system?
     estrogen: secondary sex characteristics, and fluctuations with the endometrium
     progesterone: fluctuations with the endometrium.
  - What secondary sex characteristics do they promote?

=hair growth (armpits, pubic, leg) =breast growth =widening of hips

=increased fat growth over muscle

iv. Know what occurs throughout the menstrual cycle

=about 28 day cycle =starts with menstruation =ovulation occurs midway through

=ends/starts new cycle with menstruation if no fertilization and implantation occurs

Terms to take note of are

follicle=the outer shell that protects the maturing egg cell in the ovary; also produces estrogen and progesterone ovulation=a mature egg cell is release from the ovary, and is ready for fertilization (~3-4days) menstruation=the shedding of the endometrium (~5-7 days)

endometrium=the internal lining of the uterus that will nurture a growing embryo

- Know the approximate length of each stage and the whole cycle

=Whole cycle is ~28 days (month) =menstruation ~ 5-7 days (week) =ovulation ~3-4 days

- c. Know the stages that occur throughout human development from fertilization to birth
  - i. Include terms like:

zygote=single cell, made when the sperm cell fertilizes the egg cell sperm=male gamete (23 chromosomes)

egg=female gamete (23 chromosomes)

ovulation=when an egg cell is released from an ovary, and ready for fertilization fertilization=when a sperm cell's nucleus joins with the nucleus of the egg cell implantation=when a zygote connects to the endometrium to begin growing. embryo=from implantation to ~9 weeks (when bone forms) fetus=from ~9 weeks until birth (bone has formed)

labour=act of giving birth

birth=when the fetus exits the uterus via the vagina

ii. Identify what separates an embryo from a fetus.

=the formation of bone

#### 4 Genetics

- a. Know the meaning, and how the following genetic terms relate to each other:
  - i. Trait=characteristic that we can visually see on people gene=section of DNA on a chromosome that codes(determines) for a trait chromosomes=coiled up DNA heredity=passing of traits from parents to offspring homologous pairs=two versions of the same chromosome (one from mom, one from dad) DNA=genetic material that codes for all the traits a human/organism has allele=different versions of a gene/trait
- b. Know the following basic genetic concepts
  - i. How many chromosomes are in a human cell? =46
    - What is the haploid number?=23(half of the set of chromosomes)
    - What is the diploid number?=46 (full set of chromosomes)
  - ii. Which chromosomes are the sex chromosomes?=X and y
    - What combination sex chromosomes codes for the male sex?=Xv
    - What combination of sex chromosomes code for the female sex?=XX
  - iii. How many chromosomes does each parent give to their offspring? =23 (haploid gametes)
  - iv. Understand the difference between dominant and recessive alleles.
    - =dominant: this version of the gene/trait will always be visible
    - = recessive: this version of the gene/trait will be masked, unless there is only recessive alleles present
  - v. Understand the difference between genotypes and phenotypes
    - =Genotype: the pair of alleles present for a gene/trait
    - **=phenotype**: the physical appearance of what is in the genes
      - Understand what genotypes (heterozygous, homozygous dominant, homozygous recessive) will produce a dominant or recessive phenotype heterozygous= one dominant, one recessive (Ee): this results in a dominant phenotype homozygous dominant= two dominant (EE): this results in a dominant phenotype homozygous recessive=two recessive (ee): this results in a recessive phenotype

E e | Big ears = 100%. E e | Small ears = 0%.

c. Understand how to use a Punnett square to predict the possible genotypes and phenotypes of offspring.

Example: Big ears E= big ears e=small ears

d. Dad=big ear (EE) Mom=big ears (Ee)

# Vocabulary

- Allele
- Anaphase
- Asexual reproduction
- Cell cycle
- Chromosomes

- Cytokinesis
- Diploid
- DNA
- Dominant
- Embryo
- Endometrium
- Estrogen
- Fertilization
- Fetus
- Gamete
- Genes
- Genetic diversity
- Genotype
- Haploid
- Heredity
- Heterozygous
- Homologous Pair
- Homozygous
- Hormone
- Interphase
- Mitosis
- Meiosis
- Menstrual cycle
- Menstruation
- Metaphase
- Ovulation
- Phenotype
- Progesterone
- Prophase
- Punnett Square
- Recessive
- Sex-linked trait
- Sexual reproduction
- Telophase
- Testosterone
- Trait
- Zygote













From <a href="https://gvsd-my.sharepoint.com/personal/laura-kalvta-gvsd-ca/Documents/Documents/Science%2010F/02%20-%20Reproduction/Assessment/Reproduction%20Review-Topics%20on%20Test.docx">https://gvsd-my.sharepoint.com/personal/laura-kalvta-gvsd-ca/Documents/Documents/Science%2010F/02%20-%20Reproduction/Assessment/Reproduction%20Review-Topics%20on%20Test.docx</a>