Chem Exam Review

Thursday, June 14, 2018 8:30 AM

Chemistry In Action

- Lab Safety Material:
 - Safe-lab practices
 - o Lab safety scenarios
 - Situational, not the symbols
- Periodic Table
 - Group/Family Names and similarities
 - Coloured on your PT
 - (You can take your green PT in to the exam!)
 - Groups are the columns
 - Similarities: they react the same because they have the same number of valence electrons
 - o Period numbers and similarities
 - The rows
 - They have the same number of electron shells/orbits
 - Be able to identify: proton number, electron number, neutron number, lon charge, combining capacity, valence electrons, etc.
 - Protons = atomic number
 - Electrons = protons (in neutral atom)
 - Neutrons = atomic mass subtract atomic number
 - Ion charge = combining capacity = top right corner
 - The charge the atom will be when it loses/gains electrons
 - Valence electrons = electrons on outermost electron shell
 - See the roman numerals, or count from left to right
- Subatomic particles
 - \circ $\,$ Know the differences between protons, electrons, and neutrons
 - o Proton positive, in nucleus, 1 amu (atomic mass unit)
 - o Neutrons neutral, in nucleus, 1 amu
 - o Electrons negative, around the nucleus, no mass
- Atom
 - $\circ\;$ Know the differences and be able to identify metals, metalloids, and non-metals
 - Metals left side of staircase
 - Shiny, malleable, conductors
 - Metalloid directly above and below the staircase (exception: aluminum)
 - Non-metals to the right of the staircase (include the chalcogens, halogens, and noble gasses)
 - Dull, brittle, don't conduct
 - $\circ~$ Be able to identify what type of ion an atom will become (cation or anion)
 - Cation positive ions
 - Lost electrons
 - Metals (on the left) become cations because it's easier to lose one or two or three electrons than gain more
 - "cats have paws"
 - Anion negative ions

- Gained electrons
- Non-metals (on the right) become anion because it's easier to gain one or two or three than to lose more.
- "anion looks like onions which make you cry (bad)"
- Be able to draw Bohr Diagrams and Electron Dot Diagrams of atoms
 - Bohr:
 - Step 1: determine number of protons, neutrons, electrons
 - <u>Step 2</u>: draw nucleus and put protons and neutrons in
 - Step 3: look at period number to determine number of electron shells
 - Step 4: place the correct number of electrons on each shell (2, 8, 8 unless it's an ion...then add charge if ion)

- Electron dot diagram
 - Step 1: write symbol
 - Step 2: draw valence electrons around
 - □ Be on the 4 sides (like a square) and you need one on each side before doubling

- Bonding
 - \circ $\,$ Know the differences and similarities between ionic and covalent bonds
 - See past venn diagram
 - Ionic bonds (need ions)
 - Between metal and a non-metal (cation and anion)
 - Transfer (give/take) of electrons to get ion charges
 - Opposite charges attract and hold elements together
 - Covalent bonds
 - Between two or more non-metals
 - Sharing electrons to gain a full valence shell
 - Sharing that holds the elements together
 - Similarities between the two:
 - The goal of elements is a full valence shell (octet rule)
 - Both form compounds
- Compounds
 - $\circ~$ Be able to identify whether a compound is ionic or covalent
 - Metal and non-metal = ionic

- 2 non-metals = covalent
- Know the differences and similarities between ionic and covalent compounds
 - See above for general
 - Naming and writing formulas are different...see below
- o Be able to write the formula for a compound based on its name
 - Ionic compounds
 - CRISS-CROSS method!
 - □ √<u>step 1</u>: write the ions with their charge
 - □ √<u>Step 2</u>: cross the charges to be opposite subscripts
 - □ Step 3: reduce if necessary

Examples -> aluminum Oxide

$$AX_2^{3} \xrightarrow{2} O_3^{2} \rightarrow AX_2O_3$$

- Covalent
 - Look at the prefixes in name, and add as subscripts to corresponding elements

- $\circ~$ Be able to write the name of a compound based on its formula
 - Ionic
 - Step 1: write the name of the metal first
 - Step 2: write the name of the non-metal, but change the ending to "-ide"

Example: Naz S Sodium sulfi Xifother endings are USE, see polyotomic 1011 Sheet 1 Jos -> Sodium Sulfide

Multi-valent metals
 More than one charge possible for metal

- Polyatomic ion
 - □ Go to polyatomic ion sheet if we notice more than one non-metal or if we have a name not ending in "-ide"

Example: more than × look at polyatomic ion sheet hydroxide

- Covalent
 - Simply write the prefix to show the subscripts
 **do not write mono on the first one

Example's CQ2 Inone J Carbondi Oxide

- Chemical reactions
 - o Describe and identify the 5 different chemical reactions
 - 1. Synthesis
 - a. $A + B \rightarrow AB$
 - 2. Decomposition
 - a. $AB \rightarrow A + B$
 - 3. Single Replacement/Displacement a. $A + BC \rightarrow AC + B$

- a. $AC + BD \rightarrow AD + BC$
- 5. Combustion

a.
$$C_xH_y + O_2 \rightarrow CO_2 + H_2O_2$$

7 $\nabla_xyggn C_{ay}$

hydrocarbon (any number of C = H)

- $\circ~$ Be able to balance chemical equations
 - Step 1: count the atoms on each side of the equation
 - Step 2: Find a problem (element not balanced)
 - Step 3: Fix the problem with a coefficient
 - Step 4: Recount, and repeat Steps 2-4 until there is no more problems.

**the coefficients should be in lowest terms (the smallest possible multiples)

- Acids and bases
 - Know all the differences between acids and bases

Acid	Base

with which

Sour taste	Bitter taste
Corrosive	Corrosive
Low pH (7-1)	High pH (7-14)
Electrical current passes through	Electrical current passes through
Reacts with metals	Don't react with metals
Neutralizes bases	Neutralizes acids
Turns litmus paper red	Turn litmus blue (B ase = b lue)
	Slippery
Release H+ ions	Release OH- ions
Examples: lemon juice, vinegar, hydrochloric acid	Examples: bleach, ammonia, cleaning products

• Know different ways in which you could identify any

- Indicators
 - Litmus paper: acid is red, base is blue.
 - □ Red litmus: stays red with acid, turns blue with base
 - □ Blue litmus: stays blue with base, turns red with acid
 - ***what happens if both red litmus and blue litmus maintain their colour? (blue stays blue, red stays red)
 - Neutral substances won't cause a change in either
 - Phenothalein
 - Colourless liquid
 - Colourless with acid
 - Pink with base
- \circ $\:$ Neutralization reactions:
 - $\circ \quad \mathsf{Acid} + \mathsf{base} \to \mathsf{salt} + \mathsf{water}$
 - \circ $\,$ The acid cancels out the bases properties, vice versa