P2 Electricity Review Topics

January 21, 2020 9:13 AM

1. Static Electricity

- Positive, negative, neutral charges
 - o What structure holds which charge?
 - Positive protons
 - Negative electrons
 - Neutral neutrons
 - o Which charge moves?
 - Electrons(negative) are the only charges that move
- Friction
 - o What is friction?
 - Resistance between two surfaces
 - We looked at it as rubbing!
 - o How can friction charge objects?
 - Friction energizes electrons and causes them to transfer
- Attraction and repulsion of charges
 - Opposite charges attract
 - Positive attracts negative
 - Negative attracts positive
 - Like charges repel
 - Negative repels negative
 - Positive repels positive
- Insulators and Conductors
 - o What are insulators? What are examples?
 - Insulators do not allow electrons to freely flow through them!
 - Examples: rubber, wood, wool, Styrofoam...etc
 - o What are conductors? What are examples?
 - Conductors allow electrons to freely flow through them
 - Examples: metals (copper, aluminum, iron, nickel, gold, silver...etc)
 - o Which are easier to charge?
 - Insulators are easier to charge!
 - Because they hold the electrons in one place to keep a charge
 - Conductors will let the electrons flow through, and then ground out

Polarization

o Polarization is when you temporarily charge a neutral object with a charged object.

- o How does polarization work?
 - When a charged object come near a neutral object, the charge is either going to attract or repel the electrons in the neutral object. This causes a temporary moment for the charged object to attract the neutral object.
- o How can a positive object cause polarization?
 - Yes, it can
 - With a positive object, the electrons in the neutral object will be attracted to the positive which causes a temporary negative charge on one side of the neutral object.
- o How can a negative object cause polarization?
 - Yes, it can
 - With a negative object, the electrons in the neutral object will be repelled, and this causes a temporary positive charge on one side of the neutral object.

2. Current Electricity

- Creating Current Electricity
 - o What is current electricity?
 - This is the movement of electrons through a conducting loop (wire)
 - What 2 basic steps are needed to create current?
 - Take electrons from some source (build them up)
 - Let the electrons flow back to their source through a loop (wire)
 - What are the 5 different ways current can be created?
 - Chemical, thermoelectric, piezoelectric, photoelectric, electromagnetic
 - What kind of energy is being turned into electrical energy?
 - Chemical chemical energy
 - Thermo heat energy
 - Piezo pressure (mechanical energy)
 - Photo solar energy
 - Electromag. mechanical
 - What are differences between static and current electricity?
 - ***see table in Notes 3.02****

SIMILAR	DIFFERENT
Both: need input of energy to create charge (friction or other source)	Static: displaced electrons are localized (in one spot) Current: displaced electrons move
Both : 1st step is charge separation 2nd step is charge transfer (neutral object or battery)	Static: brief transfer of small amounts of charge (shock) Current: continued transfer of

Both: will discharge (run out)
when all electric charge is transferred back

large amounts of charge

Static: discharges randomly
Current: discharges through a
conducting path

- Components in a Circuit
 - Cell (Battery)
 - What happens to create the current in a cell?
 - One metal loses electron
 - One metal gains electrons
 - A chemically reacting substance that causes this to happen
 - What are the 3 parts of a cell?
 - Negative electrode
 - Positive electrode
 - Electrolyte
 - o What is a coulomb (Q)?
 - It's a grouping of electrons (6.25 quintillion)
 - How do coulombs relate to voltage and current?

- o What is voltage?
 - How much energy the electron have
 - Aka: potential difference
 - What measures it?
 - voltmeter
 - What are the units?
 - Volts (V)
 - How do we calculate it?
 - See triangle above (V=E/Q)
- o What is current?
 - How fast the electrons are moving
 - What measures it?
 - ammeter
 - What are the units?
 - Amperes (amps) (A)
 - How do we calculate it?
 - See triangle above (I=Q/t)
- o What is resistance?
 - The force working against the current (electrons)
 - What are the units?

- Ohms (Ω)

- What is the difference between a load and a resistor?
 - Both add resistance to a circuit, but loads will use the energy for a use, while resistors just use the energy to produce heat
- Schematics
 - Know what symbols mean what.
 - SEE NOTES 3.04!!
 - o Be able to draw a circuit, either series or parallel
 - SEE ASSIGNMENT 3.04!!
- Series vs Parallel Circuits
 - Series circuit:
 - Know the total voltage across the battery equals the sum voltage drop across each load.
 - Know the overall current decreases as you add more loads.
 - Know current is the same throughout the entire circuit.
 - Parallel
 - Total voltage is equal to the voltage drop on each branch
 - Know the overall current increases as more branches are added
 - Know the sum of the current on all branches equals the current at the common point
 - ***SEE ASSIGNMENT 3.06****
- Electricity at Home
 - o Know how to read a Hydro meter
 - To always go to the lower number!!
 - Remember: 0 is lower than 1, but 9 is lower than 0!
 - Remember, to figure out the amount of electricity used in one month, you take the current reading and subtract the last month's reading
 - Know how to calculate how much electricity costs
 - Be able to compare appliances against each other
 - Think of Monday!!! kWh x 8.7 cents!
 - To turn watts (W) into kW, you divide by 1000!

From https://gvsd-my.sharepoint.com/personal/laura_kalyta_gvsd_ca/Documents/Documents/Science%2010F/03%20-% 20Electricity/Assessment/Electricity%20Review%20Topics.docx>