## Unit 7: Trigonometry of Right Triangles

7.1: Pythagorean Theorem * Use to solve for an unknown side

- Side c is always the hypotenuse (across from $90^{\circ}$ angle) when hou the
a

other 2!
- Use to solve for the hypotenuse (side c)
- $a^{2}+b^{2}=c^{2}$
- $\sqrt{ }\left(a^{2}+b^{2}\right)=c$
- Use to solve for other sides (either a or b)
- $a^{2}=c^{2}-b^{2}$
sides'
- $a=\sqrt{ }\left(c^{2}-b^{2}\right)$


## 7.2: The Sine Ratio

- Think: SOH
- 至inA $=\frac{\emptyset p p}{\underline{\boldsymbol{h} y} p}$

$$
\begin{array}{cc}
\sin A=\frac{x}{h \not p} & \sin A=\frac{O P D}{x} \\
\downarrow & x=\frac{O P P}{\sin A}
\end{array}
$$

## 7.3: The Cosine Ratio

- Think: CAH
- © $\cos A=\frac{\frac{\square a}{} d j}{\boxed{\hbar} y p}$


## 7.4: The Tangent Ratio

- Think: TOA



## 7.5: Finding Angles and Solving Right Triangles

- Determine which ratio to use based on SOH CAH TOA
- Set up the ratio: ie $\sin A=\frac{o p p}{h y p}$
- Inverse the ratio (fraction/decimal) to get the angle:

$$
\angle A=\sin ^{-1} \frac{o p p}{h y p}
$$

